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Abstract-The theoretical study of fully developed laminar flow in a curved pipe gives a satisfactory 
result for resistance coefficient and heat-transfer coefficient in fully developed temperature field under 
the condition of uniform heat flux at large Dean numbers [ = Red(u/R)]. The ratio of the Nusselt 
number for a curved pipe flow to that for a straight pipe flow is obtained as a function of Dean number 
and Prandtl number. As Dean number and Prandtl number increase, the effect of curvature on flow 
resistance and heat transfer increases, but the Nusselt number ratio approaches to the asymptotic 
value with the increasing Prandtl number. Experimental study is carried out for air flow in a curved 
pipe. The velocity and temperature distributions are measured and the Nusselt number ratio obtained 

by the experiments is shown to be in good agreement with that of the theoretical analysis. 

NOMENCLATURE 

4 wl at the centre of a cross section 
perpendicular to the pipe axis; 

A’, gl at the centre of a cross section 
perpendicular to the pipe axis ; 

a, radius of the pipe; 
c, coefficient, E - (BP/H M); 

CP, specific heat of fluid at constant 
pressure; 

D, intensity of the secondary flow in the 
flow core; 

fsr,fs$, tangential stresses in the direction of 

G, 
g, 
K 
k 
Nu, 
p, 
Pr, 
P, 
43 

pipe axis ; 
= Tw - T; 
= G/ra; 
Dean number, - Rel/(u/R); 

Y53 
- _ 

heat conductvity of fluid; Greek symbols 
Nusselt number, E [2aq/k(T, - Tm)]; 6% thickness of the velocity boundary 

= WV21 (P/P); layer ; 
Prandtl number, s pcpv/k; ata, thickness of the thermal boundary 
pressure; layer ; 
heat flux at the wall to the fluid per 5, thickness ratio, s &/a; 
unit area and unit time ; H E R/a; 

dimensionless transferred heat in the % = r/a; 
fluid; 8, axial co-ordinate ; 
radius of curvature of the pipe axis; 4 resistance coefficient, 
Reynolds number, = (2~2 W&) ; 

479 9*, 

R, 
Re, 
r, 

temperature; 
mixed mean fluid temperature; 
wall temperature; 
radial component of velocity, 
u f Ualv; 
circumferential component of velocity, 
v = Va/v; 
axial component of velocity, 
w f Wa/v; 
mean velocity, wm = Wma/v; 
horizontal co-ordinate of a mesh of 
the cross section, when the axis of the 
curved pipe is placed in a horizontal 
plane; 
vertical co-ordinate of a mesh. 

co-ordinate in radial direction in the 
cross section; I4 viscosity; 
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-PIP; 
-l--71; 
density; 

54 

SulTixes 
0, 
1, 
1, 
11, 
m, 

temperature gradient .along the pipe 
axis ; 
circumferential co-ordinate. 

value at the pipe wall; 
value in the flow core region; 
first approximation; 
second approximation; 
mean value taken around the peri- 
phery (# = 0 - 2~) ; 
value at the edge of the velocity 
boundary layer ; 
value at the edge of the thermal 
boundary layer. 

laminar flow. Using a perturbation method he 
tried to find deviation of a velocity profile from 
the Poiseuille flow pattern by solving the Navier- 
Stokes equations. He pointed out that a 
secondary flow is set up and the dynamical 
similarity introduces a parameter K = Reds/R 
which is called Dean number. However, his 
solution is applicable only in quite small 
Dean number regions, and his formula for the 
resistance coefficient is not useful enough for 
practical use. Adler [8] closely examined the 
velocity distributions by experiment, and found 
that a velocity profile of laminar flow differs 
greatly from the parabolic distribution. Hence 
he discussed the fully developed laminar flow 
assuming a thin boundary layer along the wall. 
His formula for the resistance coefficient asymp- 
totically approaches to the observed results in 
very large Dean numbers. The same assumption 
of boundary layer is employed by Barua [9] for 
the analysis of laminar flow and by Ito [6] for 
turbulent flow. However, as shown later in the 
arguments by these authors there is incomplete- 
ness, and no theoretical approach to the problem 
of heat transfer has been done so far. 

INTRODUCTION 

HEAT TRANSFER in a curved pipe is of funda- 
mental importance in various heat exchangers 
having heating or cooling coils. Curved pipes 
are also used for heat transfer in heat engines 
and industrial equipment. However, only few 
papers have been reported for this problem, in 
particular no theoretical analysis is known. 

The first experimental study was done by 
Jeschke [l] for turbulent flow of air. His em- 
pirical formula was revised by Merkel [2] and 
the revised formula is found as Jeschke’s for- 
mula in many books. Hawes [3] tried to investi- 
gate velocity and temperature distributions in a 
curved pipe flow, but the data on the tempera- 
ture field were not certain ones. Ede [4] suggested 
from his experimental results a method to 
calculate the heat-transfer coefficient for a right- 
angled bend. Recently Seban and McLaughlin 
[5] presented experimental data on heat transfer 
for laminar flow of oil and turbulent flow of 
water in curved pipes. 

Experimental studies of flow resistance in a 
curved pipe have been done by investigators. 
The data on the resistance coefficient are well 
summarized by Ito [q. On the other hand, a 
satisfactory explanation of the flow field has not 
yet been given theoretically. The first theoretical 
study was done by Dean [7] for fully developed 

The purpose of this paper is to give a precise 
investigation on heat-transfer rate in a curved 
pipe for fully developed laminar flow under the 
condition of uniform heat flux, over a fairly wide 
range of Dean number. Physical properties are 
regarded as constant. The first part of this paper 
is devoted to a theoretical study of flow field, in 
which incompleteness in the previous theories is 
excluded. In the second part, the temperature 
field is discussed. In the latter part experiments 
were made for air flow in a uniformly heated 
curved pipe of radius ratio 40. Velocity and 
temperature distributions in the pipe were 
measured by means of a one-hole yaw probe and 
a thermocouple probe. From the observed 
distributions, mixed mean temperatures were 
computed and Nusselt numbers were calculated 
to compare with those obtained by theoretical 
analysis. 

THEORETICAL ANALYSIS OF THE FLOW 

IN A CURVED PIPE 

In a curved pipe the fluid in the central part 
is driven toward the outer wall by centrifugal 
force. The fluid near the wall flows along the wall 
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surface to the inner wall as shown in Fig. 7. 
Thus in the pipe the secondary flow forms a 
couple of vortices in a cross section of the pipe. 
In order to investigate the effect by the secondary 
flow in the flow field, balance of forces in the 
direction of the pipe axis is considered at first. 
Forces are viscous stress, stress caused by the 
secondary flow of the fluid and pressure force. 
For a steady and fully developed laminar flow, 
pressure gradient along the pipe axis is constant. 
When the system of co-ordinates is taken as 
shown in Fig. 1 and r/R < 1 is assumed, the 
force balance equation is expressed in the 
following non-dimensional form; 

$? (~T~J + :3$ = - C (constant) (1 .l) 

where the tangential stresses are (see Fig. 1) 

Analogous to Reynolds stress in turbulent 
flow, uw and VW are stresses caused by the 
secondary flow and predominate over an entire 
cross section of the pipe except the narrow 
layer near the wall surface in large Dean number 
regions. These tangential stresses may be 
supposed to introduce the additional pressure 
loss to a flow in a curved pipe. 

Hereafter, the region where viscous stress 
might be ignored is called a core region of the 
flow, and in this region the velocity components 
U, 0, w, are denoted by ~1, vi, ~1. On the other 

hand the region adjacent to the wall is called a 
boundary layer. 

1. The velocity distributions in the core region 
The tangential stresses in the core region are 

expressed by 

Tell = - Ui WI, Tfj$ = - Vl Wl (1.3) 

The curvilinear motion of fluid produces 
pressure distribution across the pipe section. 
The relations between the centrifugal force and 
the pressure gradients in the cross section are 

wl” ap W; . 
Hcos* =-) 

871 
Bsm# = -q$+ (1.4) 

Elimination of the pressure terms from these 
equations yields the following relation for the 
axial velocity component in the core region 

From this equation and the equation of 
continuity [a(Tu,)/T $1 + (&l/v 34) = 0 the fol- 
lowing special solution is obtained and will be 
shown to be reasonable by experimental analysis 

ur = D cos 1c, 1 
vi = - D sin 4 

where A and D are constants. 
Therefore the secondary flow in the core region 

is seen to be expressed by a uniform flow toward 
the outer wall. Of course, the actual flow field is 

;I_“” ring stresses in the direction 
8 exerted upon o small element 

of the fluid 

FIG. 1. System of co-ordinates. 
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more complicated and the compensation will 
be introduced in the later analysis. 

2. The velocity distributions in the boundary layer 
According to the relations of (1.6), the fluid 

in the core region flows toward the outer wall, 
and then enters the thin layer close to the wall 
and is pushed back along the wall toward the 
inner side by the pressure gradient. In considera- 
tion of the flow field in the cross section shown 
in Fig. 2, the flow rate of the secondary flow 
through the plane B-O is to be equal to that 

FIG. 2. Continuity of the secondary flow rate. 

through the plane A-B. If 6 is taken as the 
thickness of the boundary layer, the equation of 
continuity is written as 

8 v d[ = D (1 - 8) sin (Ir (1.7) 

The velocity components v, w in the boundary 
layer can be determined from equation (1.7) and 
the following boundary conditions : 

at.$=O v=w=o 

att=S 
alI 

v = 01, - = 0, 
86 

8W awl 
w = WI&, - = - at ( 1 -&-a 

u=- Dsin#[(-~~+6)~+ 1 

WCW18 2ll_a ( 1 6 82 

+ scos * ‘_ !Y 
D C ) s 82 

In the previous analytical works by Adler and 
Barua, etc., some of the boundary conditions 
cited above are not satisfied at the edge of the 
boundary layer, the velocity profile is not joined 
smoothly to that in the core region and v does 
not vanish at $J = r. By putting v as that in 
equation (1.8) this unreasonableness can be 
omitted. Examples of the velocity distributions 
in the boundary layer are shown in Fig. 3. 

0 I.0 

,/‘I 
R”, / 

/ 

i,-ti 

0.5 $ / 0.5 1 
/ 

/ 

.c. -4 -3 -2 -I 0 I O( I $=r +=o '{O 
u/u, s 6 

FIG. 3. Velocity distributions in the boundary layer 
(when 6 = 0.3). 

3. The relation between the pressure gradient and 
the velocity gradient at the wall 

Now we consider the region bounded by the 
pipe wall and two cross sections apart by a 
distance R de. From balance of forces exerted 
over this portion of the fluid, we have 

2n a 

I[ [p--(p+$ORdS)]rdrd$= 
0 0 

-Rdep 
0 

So as to satisfy the conditions shown above This is written in a non-dimensional form as 
the velocity components are expressed as, follows : 
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C=;j(/$d+2(%& (1.9) P={?$-;s,)-;}C (1*16) 

0 

As shown later, the variation of 6 along # is 
very small, therefore by substituting 6 by its 
mean value 6, in equation (1.8), the following 
relation is obtained to compute equation (1.9). 

($)s=E+(& l);cos# (1.10) 

The mean value of equation (1.14) over JI is 
C/2 and satisfies equation (1.9). Equation (1.14) 
must be equal to equation (1.10). Equation 
(1.10) has a simple form as it was reduced from 
a plain velocity profile in the core region given 
by equation (1.6), while E in equation (1.14) is a 
function of #. 

From equations (1.9) and (1.10) 

(1.11) 

4. The boundary-layer momentum equation 
From equation (l.l), the boundary layer 

equations are derived on the assumption that the 
thickness of the layer is very thin and both 
viscous stress and stress by the secondary flow 
are not ignored. The boundary-layer equation 
in the direction of the pipe axis is 

SW aw aw 
@+u~-vq=-c (1.12) 

Integration of this equation over the boundary 
layer using the equation of continuity yields the 
following momentum equations : 

jlCdi + ($)b (1.13) 
0 

The right-hand side of equation (1.13) is inte- 
grated by using equation (1.8) and reduced as 
follows after substituting equation (1.11) and 
replacing 6 by 6,. 

=E+Fcos# (1.14) 

where 

E={(;- ~S,)COS~~+ 

(i--g6,)sin2$+S,jC (1.15) 
I / 

In the equation obtained by substituting 
equation (1.8) into these equations, A and C are 
included. To express A and C by am, the flow 

However, the variation of E with 4 is very 
small compared with that of the rest terms in 
equation (1.14) as shown in Fig. 5, therefore E 
is taken to be constant and replaced with its 
mean value C/2. Then in order to let equation 
(1 .lO) be equal to equation (1.14) the coefficient 
of cos (G in equation (1.10) must be equated with 
F, and the following relation between D and 
6, is found: 

(; - $_)D2s: = 4 (1.17) 

In Adler’s and others’ reports, they did not 
take into account this analysis in the momentum 
balance and introduced discontinuity of tan- 
gential velocity at the edge of the boundary 
layer, therefore they unreasonably had finite 
tangential velocity in the boundary layer at 
* = ?T. 

In order to determine D and a,,,, another 
relation between them is introduced by con- 
sidering momentum balance in the radial and 
circumferential direction in the boundary layer. 
The momentum equations are 

8 

P= 
S( 

I 

af 8 
a v2d[-vol’ vdt+ a* s s 

0 0 

!!!$/w2d;+/ 
' ap 

3-qqdf 
0 0 

au 

() Ffo=O : 

(1.18) 

+ 
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rate through the pipe is considered in terms of 
the average velocity defined as follows: 

2r l-8 

Re 1 
W m=-=- 

2 ‘s s “i 
wlrl d? d# + 

0 0 

where 

2n 6 

ss 
41 - O&fd# (1.19) 

0 0 

Re = 2a W,,Jv. 

When we substitute equations (1.6) and (1.8) 
into equation (1.19), integrate it and replace 
6 by Sm, we get 

Re 1 
A=2 1_jS,+-QSi (1.20) 

From equation (1.1 l), we have 

2Re 1 
C=g 

l-+s,+gs; 
(1.21) 

m 

Substituting equations (1.6) and (1.8) into 
(1.18) and using equations (1.20) and (1.21), we 
have 

& (96 - 77s - 2362 + 

43S3)D4S~Scos 4 
I 

;s:)d+$s3[(-;+ 

> 

2 
6 + 4(1 - S)cos# + 

DS, + 4(1 - 6) cos 9 (1.22) 

1 

llK2 
- 30 84 $ 026; + 

406, cos Q + 12 cos2 4 + 

03 S; (12 - 66) 1 - f 6, + 

2 
=o 

where 

K = Re/Z/H[= Re2/(a/R)] 

5. Computation of D and 6, 
In this report phenomena in the region of 

large Dean number K are analysed. According 
to the high approximation in the boundary-layer 
theory D and 6 may be expanded in a power 
series of K-1f2. Moreover 6 is expressed by its 
mean value 6, and the deviation AS. It can be 
easily shown from the investigation of the 
power of K in equation (1.17) and equation (1.22) 
that the series of D start with K1j2 and 6 with 
K-112. Thus D and 6 are expanded as 

D = DI Klf2 + Dz f D3 K-112 + . . . 

6 = (%,a1 + ASI)K-~‘~ + (ha2 + 1 (1.23) 

AS2) K-l + . . . I 

Then substitution of equation (1.23) in 
equations (1.17) and (1.22) and equating of 
coefficients of the same power of K give D and 
6, as follows: 

(a) 1st approximation. Equating the co- 
efficients of K” in equation (1.17) we find 

D2 S2 1 ml 
_ 20 (1.24) 

If we equate the coefficients of K1/” in equa- 
tion (1.22), we have 

96 
35 Dl” @,I + ASI) cos $ + 12 DI - & (S,l + 

4 2 
A&)3 1 + ~- 

( Dr S,r 
cos # 

1 
= 0 (1.25) 

This equation contains the constant terms 
and the terms varying with 4. Considering only 
the constant terms in equation (1.25), we have 

Sk, = ‘7 D1 

From equations (1.24) and 
S,I are determined as follows 

D1 = 0.965 6 
6 ml = 4.631 1 

(l-26) 

(1.26) DI and 

(1.27) 

Use of these values gives the distribution of 
6 along # from equation (1.25) as shown in 
Fig. 4. The figure shows that the variation of 6 
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FIG. 4. Distribution of 6 along 4. (610 is 61 at $ = O”.) 

FIG. 5. Comparison of E and Fcos t,h in equations (1-14). 

with I) is considerably small. From the values of 
D1 and Sml, E and F cos # of equation (1.15) 
and equation (1.16) are computed and shown in 
Fig. 5. The figure shows that the variation of E 
with # is small compared with F cos # as assumed 
in the previous analysis. 

(b) 2nd approximation. Equation (1.28) is 
derived by equating the coefficients of K1Q in 
equation (1.17) and using equation (1.27). 

8.284 D2 + 1.727 Sm2 = 12.35 (1.28) 

We get also the following equation by equat- 
ing the coefficients of K” in equation (1.22) : 

240.0 D2 - 150.1 8m2 = 511.1 (1.29) 

From these two equations D2 and Sm2 are 
determined as follows : 

D2 = 1.650 
6 m2 = - 0.765 9 > 

(1.30) 

(6) The resistance coeficient 
The definition of a resistance coefficient for a 

curved pipe is 

This is written as 

/\C = c .g2 (1.31) 

With the resistance coefficient for a straight pipe 
h, = (64/Re), the resistance coefficient ratio is 
given by 

A, C A _ =---=----___ 
As 4Re 6, Re 

(1.32) 

The first approximation of this ratio is 
obtained by putting 6, = S,l K-l’2 and 
A = Re/2 as follows: 

= - czz 0.108 0 K1’2 (1.33) 

Use of 13~2 and 

Re 

gives the correction factor for the second 
approximation as 

where the suffixes I and II indicate respectively 
values by the first and second approximation. 

As shown in Fig. 6, in a wide range of Dean 

IU 

8 
6 

4 
xc 

L 
2 

FIG. 6. 1 - K diagram. 
8 

number K equation (1.34) agrees fairly well with 
the following empirical formulae provided by 
Ito [q: 

xc 21.5 K 

A* [I.56 + log Kl5.73 (1.35) 

2000 > K > 13.5 



74 YASUO MORI and WATARU NAKAYAMA 

Theoretical investigation by Dean [7] is 
limited in a Dean number region smaller than 
36 and the difference of resistance coefficient 
from that in a straight pipe is practically negli- 
gible. The flow pattern by his analysis is shown 
in Fig. 8 and differs from that in a large Dean 
number region which is obtained in this report 
as shown in Fig. 7. 

FIG. 7. Flow pattern of the secondary flow in the we 
of large K. 

c 0 

FIG. 8. Flow pattern of the secondary flow in the case 
of small K. 

LAMINAR HEAT TRANSFER IN A CURVED 

PIPE 

For fully developed flow under the condition 
of uniform heat flux, the temperature T can be 
expressed in the form 

T = rRe - G (r, $) 

where T is a constant temperature gradient 
along the pipe axis. 

Seban and McLaughlin [5] observed the 
temperature distribution around the periphery of 
cross section of the pipe. However, for laminar 
flow, this difference is very small and may be 
considered to be negligible even in the case of a 
pipe having such a thin wall as in their experi- 
ments for the purpose of obtaining the mean 
Nusselt number around the periphery. Accord- 
ing to our experiments shown below which were 
carried out with air flowing through the pipe 
having a relatively thick wall, the peripheral 
temperature distribution was observed to be 
almost negligible. 

Therefore in the following analysis the tem- 
perature of a pipe wall is assumed to be constant 
around the periphery, then the wall temperature 
is indicated by 

Tw = rR0. 

When r/R is so small as assumed in the flow 
field analysis the energy equation in a non- 
dimensional form becomes 

where 

(2.1) 

1 % 
q1 = -p;z&+ ug I (2.2) 
qe=-LA. +ug 

Pt-7 a* 
The first terms in the right-hand side of equa- 

tion (2.2) express conduction heat and the second 
terms mean convection heat. The secondary 
flow introduces additional convection heat. In a 
large Dean number region the secondary motion 
is strong enough, and then it is considered that 
the contribution of the secondary flow to heat 
transfer is predominant in the core region of the 
cross section except for a thin layer near to the 
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pipe wall. The secondary flow tends to make the 
temperature distribution uniform in the core 
region, while in the region adjacent to the wall 
steep temperature gradient might exist. 

1. The temperature field in the core region 
If we replace g by gl in the core region, we 

get from equation (2.2) 

q?j = Ul g1, q+ = 01 g1 (2.3) 

From equation (2.1), the following energy 
equation is obtained; 

(2.4) 

Substitution of equation (1.6) for ~1, ~1, wi in 
this equation yields gl as 

c A 
g1 =A’+g$12+jjrlcoS* (2.5) 

2. The temperature distribution in the region 
adjacent to the wall 

We assume along the wall a thermal boundary 
layer of thickness St. The thickness St is regarded 
as one of main parameters determining the 
temperature gradient at the wall. When the 
thermal boundary layer is assumed to be less 
thick than the boundary layer of the flow, the 
temperature profile in the boundary layer must 
be taken so as to meet the temperature at the 
edge of the core region, that is 4 = S, and let 
the temperature gradient at the wall be de- 
pendent on St. Hence when St < 6, the tempera- 
ture profile in the thermal boundary layer is 
written in the following form satisfying the 
boundary conditions 

g =g1a, at3 $ zzz - - ( 1 317 6 
at 6 = 6 

+3;- 

(2.6) 

where 
5 = St/S. 

On the contrary, when St > 6, the temperature 
profile is taken to meet the temperature of the 
core region at the edge of the thermal boundary 
layer. In this case the boundary conditions are 

ag %I 
g = mt, gj = - arl ( 1 - at 5 = St. 6t 

Therefore we take the following temperature 
profile : 

g = m, (2;-$)+Sl{-&l-s6d+ 

52 P 
$os# 2-3 

i( 1 
(2.7) 

t t 

3. Relation among the mean temperature gradient 
at the wall, Reynolds number and Prandtl 
number 

Heat balance over the region bounded by the 
pipe wall and two cross sections apart by a 
distance R d6’ is expressed by the following 
equation. 

2n a 

k a d# = pep 
ss 

A8 (wT) r dr d+ 

0 0 0 

In dimensionless form, this becomes 

The following relation is obtained by using 
the mean value: 

a&T i-1 Re Pr 
ag Om = 2- (2.9) 

To calculate equation (2.9) from equations 
(2.6) and (2.7) 6 and St are replaced by 6, and 
St, respectively based on their little dependence 
of 4. If 6, and St, are assumed to be negligibly 
small compared with unity, we have the follow- 
ing relation for St 2 6: 
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Then the following relation is obtained from 
this equation : 

Thus the following relation between the 
thickness ratio and the Prandtl number is 

A,=5SmRePr Re obtained by putting D2Sk M 20 from equation 
-__ 

8 D2 6, (2.11) (1.24). 

4. The energy integral equation of the boundary 
layer 

In the boundary layer, the conduction terms 
and the convection terms due to secondary flow 
are considered to be of the same order of 
magnitude. By the boundary layer approxima- 
tion the energy equation is written as 

1 asg ag ag 
Prap 

U~+Uii@-w=o (2.12) 

(a) For the case of St < 6. In this case the 
integration has to be done from 5 = 0 to 
.! = 6. The energy integral equation is reduced 
to 

;/god( + ] wd5 (2.13) 

0 0 

By substituting equations (1.8) and (2.6) into 
this equation, putting A = Re/2 and neglecting 
smaller terms the temperature gradient at the 
wall is obtained as follows. 

($)o=qy;-&) cos2$b+ 1 

(&f&j sin2*) + I (2.14) 

= M+ Ncos# J 
The mean value of this equation over $ 

satisfies the relation (2.9). Equation (2.10) con- 
sists of the constant term and the term varying 
with cos $, where the constant term is equal to 
Re Pr/4. The variation of A4 with # is very small 
and A4 in equation (2.14) is replaced by its mean 
value. From comparison of N with coefficient of 
cos 4 in equation (2. lo), we have 

In equation (2.15) 5 < 1 corresponds to 
Pr 3 1. 

This equation indicates that for very large 
Prandtl number 5 approaches to an asymptotic 
value of 4/11 and St tends to its limit. 

(b) For the case of St > 6. In this case, 
when equation (2.12) is integrated from 5 = 0 
to f = St the energy integral equation becomes 

dgad,, ]wd5 (2.16) 

0 0 

The same procedure as shown in the case of 
St < S is applicable to this case. When the 
first order terms are taken into account, the 
following expression of the temperature gradient 
at the wall is obtained: 

($= !y {( 1 --;~+$)cosa~+j 

(&&) sin2*j + 1 (2.17) 

[DSmRePr2 4 1 ______ 
8 i 

1-51+5F cos* 
1 J 

If the terms in the first bracket are replaced 
by the mean value 4, this equation comes to be 
same in the form with equation (2.10). By 
equating the coefficients of cos #, we have 

5 _: [2+ J(& l)] (2.18) 

In this case 5 > 1, corresponds to Pr ,< 1. 

5. Nusselt numbers 
The definition of Nusselt number is given by 

2a.g 
N” = k (T, - Tm) 
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The Nusselt number for a straight pipe is 48/l 1, when St > 6 
therefore the ratio of Nusselt number for a Zzll--6r 
curved pipe to that for a straight pipe is written 
that 

T -_T w ?n =2ra 
rr Re (ss 

slmrldrld#+ 

0 0 1 
Nue 11 2a . q 
~=-_. 
Nu, 48 k (Tw - Tnt) 

(2.19) 2n al JJ gwl(l - Od5W-t 
I 

I (2.22) 

Where q is a heat input from the pipe wall per ’ ’ 
unit area and unit time. From equation (2.8), 

2n 8 

the heat input per unit length of the pipe and JJ gw(l - Odfd# 
unit time is found that > 

0 0 I 
Substitution of equations (2.20), (2.21) or 

-k 
2rr aT St 1 a d# = 2rr ak r Kg 

( 1 

(2.22) into equation (2.19) yields the Nusselt 
ar r=a at Om = number ratio expressed as a function of Dean 

0 number K and thickness ratio 5. 
?r 

2 
rak RePr 

In the first approximation, the Nusselt 
number ratio is given for both cases by 

Therefore q is given by Nu, 
(2.23) 

q=$rkRePr (2.20) (-1 Nu, I 

=0.197 97 

The second approximation is obtained by 
The mixed mean temperature Tm is defined as correcting the first approximation with the 

277 a 
temperature and the velocity distributions in the 

Tm = ;a&- 
m JJ 

boundary layer and taking into account of terms 
T. W.rdrd# of the order of magnitude K-1. 

0 0 For the case & < 6, i.e. Pr 2 1 

(zjII=(~)Ij I 37.05 {& ll;oc;jy+13jl+ (2.24) 

5 105 30 1OPr 

For the case & > 6, i.e. Pr < 1 

6311=i~L*, 37.05{;+4 l;or ‘i;(! I 1 )L}K_“z (2.25) 
5 35 1552 20Pr 

Use of the dimensionless quantities gives the The thickness ratio 5 is given by equation 
difference between the wall temperature and the 
mixed mean temperature as 

(2.15) for the case Pr > 1, and equation (2.18) 
for the case Pr < 1. Some examples of the 

when St < 6 relation of the Nusselt number ratio against 

2nl--6 
Dean number K are shown in Fig. 9. For 

Tw--T,=g{[ j-gm&d#+ 
Pr = 0.71 and co, the curve of (NuC/Nus)rr is 
also shown. From the curves of (Nue/Nus)l and 

0 0 
27r 8 

(NuC/Nz&, it is possible to predict the effect of 

JJ g ~(1 - 5) d5 d# > 
curvature on Nusselt number for any Prandtl 

(2.21) number. For large Prandtl numbers the Nusselt 
0 0 number ratio tends to depend only on the 
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FIG. 9. 2 - K diagram. 
8 

intensity of the secondary flow and come to 
show little change with Prandtl number. The 
experimental data for air obtained by our 
experiments are in good agreements with the 
curve for Pr = 0.71. Some examples of the data 
for oil reported by Seban and McLaughlin [5] 
are also plotted taking mean value of Nusselt 
numbers at the inner and the outer wall. For 

lack of exact information about the Prandtl 
number at each run, the data are plotted 
assuming Pr = 400. 

EXPERIMENTS 

The schematic diagram of the experimental 
apparatus is shown in Fig. 10. A curved pipe of 
the radius ratio of 40 was used. The pipe is of 
brass, and 35.6 mm in an inside diameter and 
1.2 mm in a wall thickness. Upstream of the 
curved pipe placed in a horizontal plane a 
straight pipe of 8.55 m long is provided to 
settle the flow fully. The air supplied by a 
blower flows through a metering orifice for 
flow rate measurement, a settling chamber, the 
straight section and the curved pipe, and is 
discharged to open air. 

The flow rate is measured by means of a 
orifice and a Betz type manometer. The pipe is 
electrically heated by nichrom wire wound around 
it. The heating wire is divided into four parts 
which are separately controlled by four trans- 
formers so as to maintain the constant tempera- 
ture gradient along the pipe axis. The wire is 
electrically insulated from the pipe by a thin 
rock wool tape covering the pipe wall. The wall 
temperature is measured at six stations as 

Settling chamber 
Honeycomb 

I 

FIG. 10. The schematic diagram of the experimental apparatus. 
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shown in Fig. 10 by thermocouples attached to 
the external surface of the pipe. At the station 
2 and 5, in order to see the temperature variation 
around the periphery four thermocouples are 
attached at the top, bottom and each side. The 
velocity and temperature distributions inside the 
pipe are measured at two stations, A and B in 
Fig. 10, by traversing probes horizontally or 
vertically through holes or slits at the pipe wall. 
The velocity distributions are measured by means 
of an one-hole cylindrical yaw probe and a 
Chattock type manometer. The probe is of 
stainless steel, and is 0.8 mm in a diameter. It has 
a pressure hole of O-2 mm diameter. The probe is 
inserted thoroughly from one side of the wall 
to the other side. To measure the velocity at a 
position, the stagnation pressure is measured at 
first, and then according to the calibrated 
characteristics the static pressure is measured by 
rotating the probe around its axis to the angle 
of 43 degrees from the flow direction. 

The temperature distributions are measured 
by means of a T-shaped thermocouple probe 
and a potentiometer. The traversing device and 
a detailed figure of the probe are shown in 
Fig. 11. 

Screw ~- 
Sliding bed Fixed 

bed 

Flow direction 

Cu‘-CO thermocouple 
FW. 11. The traversing device and the thermocouple 

probe. 

The velocity distributions in a horizontal plane 
at two different sections where the flow fully 
developed and was ascertained to be laminar by 
a hot wire anemometer are shown in Fig. 12. 
As Ito reported, our experiment also reveals 
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FIG. 12. Comparison of the velocity profiles measured 
at station A and B in Fig. 10. 

that the flow develops in a short running length 
in a curved pipe and detailed measurements were 
carried out for fully developed flows. Figure 13 
shows that velocity profiles are not influenced 
by heating as assumed in the theoretical analysis. 
In Fig. 14 velocity profiles in horizontal and 
vertical planes are shown witb the Poiseuille 
profile. Observed temperature profiles in a 
horizontal plane are shown in Fig. 15 to reveal 
that they are fully developed. In Fig. 16 similar 
to velocity profile, temperature profiles in a’ 
vertical and horizontal plane are plotted with 
that calculated by using the Poiseuille velocity 
profile. 

These observed velocity and temperature 
profiles make clear that, as assumed in the 
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FIG. 13. Comparison of the velocity profiles measured 
when the pipe was heated and not heated. 

theoretical analysis, only in the region close to 
the wall velocity and temperature gradient are so 
large as observed in a boundary layer around a 
body. 

Heat input is evaluated from equation (2.20) 
where a temperature gradient is obtained from 
measurement of wall temperatures. A mixed 
mean temperature is evaluated as follows. A 
cross section of the pipe is divided into small 
meshes as shown in Fig. 17. By use of the velocity 
WOO, Wag and the temperature TAO, TOM measured 
on horizontal and vertical planes passing through 
a center of the section, the velocity and the 
temperature in a mesh (xi, yf) are calculated by 

wto woj 
Wij = -- wo 

Tao .Toj 
Tij = - 

To 

where WO and TO are the velocity and the tem- 
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FIG. 14. Velocity profiles. 

perature at the center of the section. Then the 
mixed mean temperature is calculated by 

C WU Tij dxi dyj 
Tm =L_ 

C Wij dxi 4vj 
ij 

The Nusselt number ratio is obtained from 
equation (2.19) and heat input determined from 
the measured wall temperature gradient. The 
physical property is evaluated at the mixed 
mean temperature. The results are in good 
agreements with the theoretical evaluation as 
shown in Fig. 9. 

CONCLUSION 

In the range of very large Dean number 
K = RedaiR, a flow field and a temperature 
field in a curved pipe are analysed for fully 
developed laminar flow with constant heat flux 
by theory and experiment, and the following 
conclusive results are obtained. 
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FIG. 15. Comparison of the temperature profiles measured 
at station rl and B in Fig. 10. (r, is the temperature at 

the centre of the pipe.) 

(1) The flow field is divided into the core 
region and the boundary layer along the wall. 
The additive flow resistance in a curved pipe 
was shown to be caused by stresses due to the 
secondary flow. The result which was obtained 
by theoretical analysis to the second approxima- 
tion was found to agree with the experimental 
results obtained so far. 

(2) The same procecure as for the flow field is 
applied to the analysis of heat transfer in a 
fully developed temperature field under the con- 
dition of uniform heat flux. The ratio of thick- 
ness of a temperature boundary layer to that of a 
velocity boundary layer was expressed in the 
terms of Pr number. NU number was shown to be 
a function of Dean number with a parameter of 
Pr number. 

(3) Experiment was carried out for a fully 
developed laminar air flow in a curved pipe of 
R/a = 40 and of 35.6 mm inner diameter in the 
measurement of velocity and temperature profile. 
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FIG. 16. Temperature profiles. (TC is the temperature 
at the centre of the pipe.) 

FIG. 17. The cross section of the pipe divided into small 
meshes in order to calculate a mixed mean temperature. 

The experimental results about these profiles 
supported the boundary-layer approximation 
applied in the theoretical analysis. 

Nusselt numbers calculated from experimental 
data were shown to agree with those obtained 
theoretically. 
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RCumGL’Ctude theorique d’un Ccoulement laminaire entitrement &abli dans un tuyau courbe 
donne un r&&at satisfaisant pour le coefficient de perte de charge et le coefficient de transport de 
chaleur dans un champ de tempkrature entikrement Btabli sous la condition de flux de chaleur uniforme 
& de grands nombres de Dean [=Rez/(a/R)]. Le rapport du nombre de Nusselt pour un Ccoulement 
dans un tube courbe g celui pour l’tcoulement dans un tube rectiligne est obtenu en fonction du 
nombre de Dean et du nombre de Prandtl. Lorsque le nombre de Prandtl et le nombre de Dean 
augmentent, l’effet de la courbure sur la perte de charge et le transport de chaleur croft, mais le rap- 
port des nombres de Nusselt approche de la valeur asymptotique lorsque le nombre de Prandtl croit. 
Une Ctude expkrimentale a BtB conduite pour I’koulement de l’air dans un tuyau courbe. Les distri- 
butions de vitesse et de temperature sont mesurks et on montre que le rapport des nombres de 

Nusselt obtenu par I’expCrience est en bon accord avec celui obtenu par l’analyse thtorique. 

Zusammenfassung-Die theoretische Untersuchung einer voll ausgebildeten laminaren Strijmung 
in einem gekriimmten Rohr gibt fiir den Widerstandsbeiwert und die Wgrmeiibergangszahl in einem 
vallig ausgebildeten Temperaturfeld unter der Bedingung einer gleichfiirmigen WBrmestromdichte bei 
grossen Dean-Zahlen [= Re-\/(a/R)] ein zufriedenstellendes Ergebnis. Wird die Nusselt-Zahl fiir die 
Strtimung im gekriimmten Rohr zu der Nusselt-Zahl fiir die StrGmung in geraden Rohr ins Verhlltnis 
gesetzt, so ist dieses VerhPltnis eine Funktion der Dean- und der Prandtl-Zahl. Wenn diese beiden 
Zahlen grijsser werden, steigt such der Einfluss der Kriimmung auf den Stramungswiderstand und den 
WLrmeiibergang. Das Verhaltnis der Nusselt-Zahlen nghert sich jedoch bei wachsender Prandtl- 
Zahl demGrenzwert. Experimentelle Untersuchungenwurden an einemluftdurchstriimten, gekriimmten 
Rohr ausgefiihrt. Geschwindigkeits- und Temperaturverteilung werden gemessen und fiir das experi- 
mentell bestimmte Verhgltnis der Nusselt-Zahlen ergibt sich eine gute ubereinstimmung mit den 

theoretisch ermittelten Werten. 

AHHOTaquJr-‘~eOpeTLiYeC~Oe n3yseme ~IO;IHOCT~~~ pa3mToro JIaMnnapnoro TeyenMx n 
I130rHYTOfi Tpy6e AaeT Y~OBneTBOpI’ITeXbHbIe pe3ynbTaTbI RJIn KO3@@i~HeHTOB COIIPOTRBJIBH~IR 
II TenJIOO6MeHa IIpH IIOJIHOCTbH) C$OpMMpOBaBmeMCH TeMlIe~aT~pHOM IIOJIe II B YCJIOBHHX 
O@iHaKOBOrO TeIIJIOBOrO IIOTOKa IIpll 6onbmMx YMCJIaX j@IHlr [=&d(a/R)]. OTHOUIeHMe 

YHCJIa HyCCeJrbTanJIH IIOTOKa B IKIOrHyTOti Tpy6e K YIICJIy HycCe.JIbTa$WI IIOTOKa B rIpHhlOfI 

Tpy6e nonyyeno B BIrfle I.$~IIKIJI~M YmXa AnHa n Imc~Ia nparrxTnFi. IlpH ynenIXseann 4Hce.7 
&IIia II ,+XiIIJ&TX3 BJIIUIHMe KpHBIUHbI Ha COIIpOTHBJIeHIie IIOTOKa I4 TeIIJIOO6MeH yBeJIHYH- 

BaeTCH,cooT~~oIneHkIeYme.? ~yccenLTa~ocTaraeTacIrnrnToT~~~rec~coro:31IaYer~~~np~yBen~Y~- 

saloIqemfl3HaYeHm Ymna rIpaafiT.im. ~po~o~mnoc~ 3KcnepmieI~TanbHoe wayseme noToKa 

BO3RyXa B I430rHyTOti Tpy6e. kl3MepH.EElCb paCIIpe~eJIeHIUI CKOpOCTH I4 TeMIIepaTypbl. no- 

Ka3aH0, YTO 3KCIIepHMeHTaJIbHO IIOJIyYeHHOe COOTHOIIIeHIJe YkiCeJI HyccenbTa XOpOrUO 

COrJIaCyeTCfI C TeOpeTHYeCKHM. 


