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Abstract—The theoretical study of fully developed laminar flow in a curved pipe gives a satisfactory
result for resistance coefficient and heat-transfer coefficient in fully developed temperature field under
the condition of uniform heat flux at large Dean numbers [ = Re+/(a/R)). The ratio of the Nusselt
number for a curved pipe flow to that for a straight pipe flow is obtained as a function of Dean number
and Prandtl number. As Dean number and Prandtl number increase, the effect of curvature on flow
resistance and heat transfer increases, but the Nusselt number ratio approaches to the asymptotic
value with the increasing Prandtl number. Experimental study is carried out for air flow in a curved
pipe. The velocity and temperature distributions are measured and the Nusselt number ratio obtained
by the experiments is shown to be in good agreement with that of the theoretical analysis.
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NOMENCLATURE
wi at the centre of a cross section
perpendicular to the pipe axis;
g1 at the centre of a cross section
perpendicular to the pipe axis;
radius of the pipe;
coefficient, = — (0P/H 26);
specific heat of fluid at constant
pressure;
intensity of the secondary flow in the
flow core;
tangential stresses in the direction of
pipe axis;
=Ty —T;
= G/7a;
Dean number, = Re+/(a/R);
heat conductvity of fluid;
Nusselt number, = [2aq/k(Tw — Twm)];
= @2 (p/p);
Prandtl number, = pcpv/k;
pressure;
heat flux at the wall to the fluid per
unit area and unit time;
dimensionless transferred heat in the
fluid;
radius of curvature of the pipe axis;
Reynolds number, = 2aWn/v);
co-ordinate in radial direction in the
cross section;
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T,
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Us

1>

temperature;
mixed mean fluid temperature;
wall temperature;

radial component of velocity,
u = Ualv,
circumferential component of velocity,
v = Va/v;
axial component of velocity,
w = Walv;

mean velocity, wy = Wpa/v;
horizontal co-ordinate of a mesh of
the cross section, when the axis of the
curved pipe is placed in a horizontal
plane;

vertical co-ordinate of a mesh.

Greek symbols

da,
Sta,

g,
H
75
6,
A
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H,

thickness of the velocity boundary
layer;

thickness of the thermal boundary
layer;

thickness ratio, = 8;/§;

= R/a;

=rfa;

axial co-ordinate;

resistance coefficient,

—(_2% )\ 20 |
=\"RrRa) jowz’

viscosity;
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v, =p/p;

g’ = l - 7];

ps density;
_ (N (for\. (9% (fow.

o =(3) () = () ()

T, temperature gradient along the pipe
axis;

¥, circumferential co-ordinate.

Suffixes

0, value at the pipe wall;

1, value in the flow core region;

1, first approximation;

11, second approximation;

m, mean value taken around the peri-
phery ($ = 0 ~ 27);

3, value at the edge of the velocity

boundary layer;
¢, value at the edge of the thermal
boundary layer.

INTRODUCTION

HEAT TRANSFER in a curved pipe is of funda-
mental importance in various heat exchangers
having heating or cooling coils. Curved pipes
are also used for heat transfer in heat engines
and industrial equipment. However, only few
papers have been reported for this problem, in
particular no theoretical analysis is known.

The first experimental study was done by
Jeschke [1] for turbulent flow of air. His em-
pirical formula was revised by Merkel [2] and
the revised formula is found as Jeschke’s for-
mula in many books. Hawes [3] tried to investi-
gate velocity and temperature distributions in a
curved pipe flow, but the data on the tempera-
ture field were not certain ones. Ede [4] suggested
from his experimental results a method to
calculate the heat-transfer coefficient for a right-
angled bend. Recently Seban and McLaughlin
[5] presented experimental data on heat transfer
for laminar flow of oil and turbulent flow of
water in curved pipes.

Experimental studies of flow resistance in a
curved pipe have been done by investigators.
The data on the resistance coefficient are well
summarized by Ito [6]. On the other hand, a
satisfactory explanation of the flow field has not
yet been given theoretically. The first theoretical
study was done by Dean [7] for fully developed

laminar flow. Using a perturbation method he
tried to find deviation of a velocity profile from
the Poiseuille flow pattern by solving the Navier—
Stokes equations. He pointed out that a
secondary flow is set up and the dynamical
similarity introduces a parameter K = Re+/a/R
which is called Dean number. However, his
solution is applicable only in quite small
Dean number regions, and his formula for the
resistance coeflicient is not useful enough for
practical use. Adler [8] closely examined the
velocity distributions by experiment, and found
that a velocity profile of laminar flow differs
greatly from the parabolic distribution. Hence
he discussed the fully developed laminar flow
assuming a thin boundary layer along the wall.
His formula for the resistance coefficient asymp-
totically approaches to the observed results in
very large Dean numbers. The same assumption
of boundary layer is employed by Barua [9] for
the analysis of laminar flow and by Ito [6] for
turbulent flow. However, as shown later in the
arguments by these authors there is incomplete-
ness, and no theoretical approach to the problem
of heat transfer has been done so far.

The purpose of this paper is to give a precise
investigation on heat-transfer rate in a curved
pipe for fully developed laminar flow under the
condition of uniform heat flux, over a fairly wide
range of Dean number. Physical properties are
regarded as constant. The first part of this paper
is devoted to a theoretical study of flow field, in
which incompleteness in the previous theories is
excluded. In the second part, the temperature
field is discussed. In the latter part experiments
were made for air flow in a uniformly heated
curved pipe of radius ratio 40. Velocity and
temperature distributions in the pipe were
measured by means of a one-hole yaw probe and
a thermocouple probe. From the observed
distributions, mixed mean temperatures were
computed and Nusselt numbers were calculated
to compare with those obtained by theoretical
analysis.

THEORETICAL ANALYSIS OF THE FLOW
IN A CURVED PIPE
In a curved pipe the fluid in the central part
is driven toward the outer wall by centrifugal
force. The fluid near the wall flows along the wall
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surface to the inner wall as shown in Fig. 7.
Thus in the pipe the secondary flow forms a
couple of vortices in a cross section of the pipe.
In order to investigate the effect by the secondary
flow in the flow field, balance of forces in the
direction of the pipe axis is considered at first.
Forces are viscous stress, stress caused by the
secondary flow of the fluid and pressure force.
For a steady and fully developed laminar flow,
pressure gradient along the pipe axis is constant.
When the system of co-ordinates is taken as
shown in Fig. 1 and r/R < 1 is assumed, the
force balance equation is expressed in the
following non-dimensional form;

319
(7) Tog) + — 700 = — C(constant) (1.1)
where the tangential stresses are (see Fig. 1)
_a? for Ow ]
7'0,'] = ;é —p— S5 E] — uw
(1.2)
. a2 fo ow
T =3
" P o

Analogous to Reynolds stress in turbulent
flow, uw and ovw are stresses caused by the
secondary flow and predominate over an entire
cross section of the pipe except the narrow
layer near the wall surface in large Dean number
regions. These tangential stresses may be
supposed to introduce the additional pressure
loss to a flow in a curved pipe.

Hereafter, the region where viscous stress
might be ignored is called a core region of the
flow, and in this region the velocity components
u, v, w, are denoted by u;, v1, w1. On the other

hand the region adjacent to the wall is called a
boundary layer.

1. The velocity distributions in the core region
The tangential stresses in the core region are
expressed by

Ty

) (1.3)

The curvilinear motion of fluid produces
pressure distribution across the pipe section.
The relations between the centrifugal force and
the pressure gradients in the cross section are

oP
—a 09

Elimination of the pressure terms from these
equations yields the following relation for the
axial velocity component in the core region

=—wWwWL, Tgy = — U1W1

wi _ Wi
HCOSI/;—8 , Hsmx/:—

(1.5)

From this equation and the equation of
continuity [é(nu1)/n 0n] + (dv1/n &) = 0O the fol-
lowing special solution is obtained and will be
shown to be reasonable by experimental analysis

u1 = Dcos s
v1 = — Dsin

owy . owy
cosp— +sinp—— =0
o+ sin g

c (1.6)
wy = A4 +B'qcos¢

where 4 and D are constants.

Therefore the secondary flow in the core region
is seen to be expressed by a uniform flow toward
the outer wall. Of course, the actual flow field is

. foy

L

She nng stresses in the direction

exerled upon a small el
of the fiuid ement

Fi1G. 1. System of co-ordinates.
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more complicated and the compensation will
be introduced in the later analysis.

2. The velocity distributions in the boundary layer

According to the relations of (1.6), the fluid
in the core region flows toward the outer wall,
and then enters the thin layer close to the wall
and is pushed back along the wall toward the
inner side by the pressure gradient. In considera-
tion of the flow field in the cross section shown
in Fig. 2, the flow rate of the secondary flow
through the plane B-O is to be equal to that

F1G. 2. Continuity of the secondary flow rate.

through the plane 4-B. If § is taken as the
thickness of the boundary layer, the equation of
continuity is written as

8
Jvdé =D — §)siny 1.7
0

The velocity components v, w in the boundary
layer can be determined from equation (1.7) and
the following boundary conditions:

até =0 v=w=20
ov
at £ =38 v = vy, 8—520,
w ow (6w1)
W = 5 _—= — _—_
16 PY: oy |s

So as to satisfy the conditions shown above
the velocity components are expressed as,

u:-Dsin¢[(—1§+6)§+ ]
(555 (=5 4)a

w:w13(2§——§)
elf)

In the previous analytical works by Adler and
Barua, etc., some of the boundary conditions
cited above are not satisfied at the edge of the
boundary layer, the velocity profile is not joined
smoothly to that in the core region and v does
not vanish at ¥ = =. By putting v as that in
equation (1.8) this unreasonableness can be
omitted. Examples of the velocity distributions
in the boundary layer are shown in Fig. 3.

r(1.8)

J

O T -0
A
7|
7
LAy |
J { R"/ !
05 405 I
I
!
I
| I
| |
| |
T T | [ L
-5 -4 -3 -2 -1 0 | 0L ¥=7 y=0 {0
vy, ) ]
Fic. 3. Velocity distributions in the boundary layer
(when 8 = 0-3).

3. The relation between the pressure gradient and
the velocity gradient at the wall
Now we consider the region bounded by the
pipe wall and two cross sections apart by a
distance R df. From balance of forces exerted
over this portion of the fluid, we have

[ (p+R80Rd0)]rdrd¢=

27
ow
— R dap. J (3_r)r=a adl/l

0

2

|

o8

This is written in a non-dimensional form as
follows:
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2

1 ow

-] -2l o
0

As shown later, the variation of § along ¢ is
very small, therefore by substituting & by its
mean value 8, in equation (1.8), the following

relation is obtained to compute equation (1.9).

ow 24 2 C

From equations (1.9) and (1.10)

C :4; 1.11)
m

4. The boundary-layer momentum equation

From equation (1.1), the boundary layer
equations are derived on the assumption that the
thickness of the layer is very thin and both
viscous stress and stress by the secondary flow
are not ignored. The boundary-layer equation
in the direction of the pipe axis is

02w ow —_c
BT T
Integration of this equation over the boundary

layer using the equation of continuity yields the
following momentum equations:

8 8
0
(—%)0=wlaa—i’jvd£ ¢JUWdf+

8

feae (%),

The right-hand side of equation (1.13) is inte-
grated by using equation (1.8) and reduced as
follows after substituting equation (1.11) and
replacing 8 by én.

ow (1.12)

(1.13)

(?1?) ~ E 4+ Fcos ¢ (1.14)

o¢)o

where
2
E= {(5

13
s 8,,.) cos? i 4

3 17 .
(-1 Sm) sin 4+ am} c (.15

Déy (2 4 1
F—{—r (5 I Sm)— D}C (1.16)

The mean value of equation (1.14) over ¥ is
C/2 and satisfies equation (1.9). Equation (1.14)
must be equal to equation (1.10). Equation
(1.10) has a simple form as it was reduced from
a plain velocity profile in the core region given
by equation (1.6), while E in equation (1.14) is a
function of .

However, the variation of E with ¢ is very
small compared with that of the rest terms in
equation (1.14) as shown in Fig. 5, therefore E
is taken to be constant and replaced with its
mean value C/2. Then in order to let equation
(1.10) be equal to equation (1.14) the coefficient
of cos ¢ in equation (1.10) must be equated with
F, and the following relation between D and
dm is found:

1 2
——_ 282 —
(1= 2o —4
In Adler’s and others’ reports, they did not
take into account this analysis in the momentum
balance and introduced discontinuity of tan-
gential velocity at the edge of the boundary
layer, therefore they unreasonably had finite
tangential velocity in the boundary layer at
Y=
In order to determine D and &, another
relation between them is introduced by con-
sidering momentum balance in the radial and
circumferential direction in the boundary layer.
The momentum equations are

(1.17)

;] W2
P= J(UZ + g cos ¢v) dé + P,
é

8
0 0
aTb'[vzdf—vl l/,J.vdf+

F(L18)
8 8
i 2
S |wae [ ae+
60 ] ]
(a_f)o =0 J

In the equation obtained by substituting
equation (1.8) into these equations, 4 and C are
included. To express A and C by &, the flow
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rate through the pipe is considered in terms of where

the average velocity defined as follows:

lendnd¢+

0
[

o!——,ga o

[va-paeas}  a

where
Re == 2a Wm/ V.

When we substitute equations (1.6) and (1.8)
into equation (1.19), integrate it and replace
8 by 8, we get

Re 1
A= 5 lt———JZ 5, 78z (1.20)
From equation (1.11), we have
2Re 1
CZE;_‘—EI—%SW,—F%S; (1.21)

Substituting equations (1.6) and (1.8) into
(1.18) and using equations (1.20) and (1.21), we
have

1
— — _ 2
3596 — 775 — 238 +

2
— 3+

1\ K 14
_ 3
6831) +7e [( 30T

8) {DSm + 4(1 — 8) cos zﬁ}z +

4383) D452 8 cos (1

‘z‘g {Db‘m + 4(1 — 8) cos ¢} cosy+ (1.22)
2
:1;—(6)8200524 11310< (4D282+

4D38,, cos ¢ + 12 cos? l/J) -+
2
D383,(12—68)(1 —58m+

1 2
Z 82 —
68m) =0

K = Re/+/H[= Re+/(a/R)]

5. Computation of D and 8y,

In this report phenomena in the region of
large Dean number K are analysed. According
to the high approximation in the boundary-layer
theory D and 8 may be expanded in a power
series of K12, Moreover & is expressed by its
mean value 6, and the deviation AS. It can be
easily shown from the investigation of the
power of K in equation (1.17) and equation (1.22)
that the series of D start with K2 and § with
K172, Thus D and § are expanded as

J1(1.23)

D = D; K¥2 - Dy -+~ D3 K-V/2 |
8 = (Bm1 + A81) K712 -+ (82 -+
Ad) K1 + ...

Then substitution of equation (1.23) in
equations (1.17) and (1.22) and equating of
coefficients of the same power of K give D and
dm as follows:

(a) 1st approximation. Equating the co-
efficients of K0 in equation (1.17), we find

D282, =20 (1.24)

If we equate the coefficients of K12 in equa-
tion (1.22), we have

96

7
35 D% (8m1 + Ad1) cos ¢ + 12 Dy — 50 Bm1 +

4 2
3 B -
Ad) (1 + Do cos z/;) 0 (1.25)
This equation contains the constant terms
and the terms varying with . Considering only
the constant terms in equation (1.25), we have

720

S?nl = —7‘ D1 (1.26)

From equations (1.24) and (1.26), D; and
8m1 are determined as follows

Dy — 09656
Smy = 4631 1 } (1.27)

Use of these values gives the distribution of
8 along ¢ from equation (1.25) as shown in
Fig. 4. The figure shows that the variation of 3
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FiG. 4. Distribution of & along 4. (310 is 8; at ¢ = 0°.)
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Fi1G. 5. Comparison of E and F cos 4 in equations (1-14).

140°

with ¢ is considerably small. From the values of
D and 8y, E and Fcos ¢ of equation (1.15)
and equation (1.16) are computed and shown in
Fig. 5. The figure shows that the variation of E
with ¢ is small compared with F cos i as assumed
in the previous analysis.

(b) 2nd approximation. Equation (1.28) is
derived by equating the coefficients of K12 in
equation (1.17) and using equation (1.27).

8:284 Dy + 1-727 82 = 12-35  (1.28)

We get also the following equation by equat-
ing the coefficients of K° in equation (1.22):

240-0 Dz — 1501 82 = 511-1  (1.29)

From these two equations D and 8,2 are
determined as follows:

Dy = 1-650
Sz = — 07659 } (1.30)

(6) The resistance coefficient
The definition of a resistance coefficient for a
curved pipe is

\ — ( _ 2) _2a
¢ Ro0) " tpW2
This is written as
16
Ae =C .+ (1.31)

Re?

180°

73

With the resistance coefficient for a straight pipe
As = (64/Re), the resistance coefficient ratio is
given by

A C A

% —4Re ~ 5n Re (1.32)

The first approximation of this ratio is

obtained by putting 8, = dm K12 and
A = Re/2 as follows:
Ao K12
il T S 172
()\s)x 5 01080 K (1.33)

Use of 8,52 and

Re

A= —%5

gives the correction factor for the second
approximation as

Ay (M) L
As/ 11 - /\s)I "1 — 3253 K12

where the suffixes I and II indicate respectively
values by the first and second approximation.
As shown in Fig. 6, in a wide range of Dean

(1.34)

10
8
e A
4 v ZZ
A Oe/As ﬁZEm iri i
Ac A pirical equation
x 2| e ten
_—_/’///-
P
| Plai 1
4 6 8102 2 4 6 8103 2 4 6 810°

I

FIG. 6. %c — K diagram.
8

number K equation (1.34) agrees fairly well with
the following empirical formulae provided by
Ito [6]:

A 215K

As [1:56 4- log KPp'™

2000 > K > 13-5

(1.35)
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Theoretical investigation by Dean [7] is
limited in a Dean number region smaller than
36 and the difference of resistance coefficient
from that in a straight pipe is practically negli-
gible. The flow pattern by his analysis is shown
in Fig. 8 and differs from that in a large Dean
number region which is obtained in this report
as shown in Fig, 7.

FiG. 7. Flow pattern of the secondary flow in the case
of large K.

©)
&/

FiG. 8. Flow pattern of the secondary flow in the case
of small K.

LAMINAR HEAT TRANSFER IN A CURVED
PIPE
For fully developed flow under the condition
of uniform heat flux, the temperature 7T can be
expressed in the form

T = 1RO — G (r, $)

where = is a constant temperature gradient
along the pipe axis.

Seban and McLaughlin [5] observed the
temperature distribution around the periphery of
cross section of the pipe. However, for laminar
flow, this difference is very small and may be
considered to be negligible even in the case of a
pipe having such a thin wall as in their experi-
ments for the purpose of obtaining the mean
Nusselt number around the periphery. Accord-
ing to our experiments shown below which were
carried out with air flowing through the pipe
having a relatively thick wall, the peripheral
temperature distribution was observed to be
almost negligible.

Therefore in the following analysis the tem-
perature of a pipe wall is assumed to be constant
around the periphery, then the wall temperature
is indicated by

Tw — ’TRG.
When r/R is so small as assumed in the flow

field analysis the energy equation in a non-
dimensional form becomes

0 oq,
— +-F =y 2.1
7731](?74,,) 30 @1
where
1 og
W= prag T .
1 og '
W= " Prgop T8

The first terms in the right-hand side of equa-
tion (2.2) express conduction heat and the second
terms mean convection heat. The secondary
flow introduces additional convection heat. In a
large Dean number region the secondary motion
is strong enough, and then it is considered that
the contribution of the secondary flow to heat
transfer is predominant in the core region of the
cross section except for a thin layer near to the
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pipe wall. The secondary flow tends to make the
temperature distribution uniform in the core
region, while in the region adjacent to the wall
steep temperature gradient might exist.

1. The temperature field in the core region
If we replace g by g1 in the core region, we
get from equation (2.2)

(2.3)

gy =U181, gy =0181

From equation (2.1), the following energy
equation is obtained;

381 g1
-i- 01— )

Substitution of equation (1.6) for u1, v1, w; in
this equation yields g1 as

_— 2.4)

A’+ R +DnCOS¢ 2.5)

2. The temperature distribution in the region
adjacent to the wall

We assume along the wall a thermal boundary
layer of thickness 8;. The thickness &; is regarded
as one of main parameters determining the
temperature gradient at the wall. When the
thermal boundary layer is assumed to be less
thick than the boundary layer of the flow, the
temperature profile in the boundary layer must
be taken so as to meet the temperature at the
edge of the core region, that is £ = §, and let
the temperature gradient at the wall be de-
pendent on §;. Hence when 8; < 8, the tempera-
ture profile in the thermal boundary layer is
written in the following form satisfying the
boundary conditions

og1

= % _ té=2
g = 814, *9;5-—— %)Jaf—

2 (€ §2 £
g:gw{z(s 82—}-83)—!—382
3
§3}+ a{Dz(l - 8)+

%cos a/z} (gz g:)

r (2.6)

where
{ = &/3.

On the contrary, when §; > 8, the temperature
profile is taken to meet the temperature of the
core region at the edge of the thermal boundary
layer. In this case the boundary conditions are

og 0g1
g = 816 6_5 = — (577).% at £ = 9,.

Therefore we take the following temperature
profile:

= 2E £2+s (1—8)+
g = 814 5 82 th ¢

gcos }(i g:) 2.7

3. Relation among the mean temperature gradient
at the wall, Reynolds number and Prandt!
number

Heat balance over the region bounded by the

pipe wall and two cross sections apart by a

distance Rdf is expressed by the following

equation.

27 2r a
oT 0
kJ (5;)r=“a dg = pcp J jR@O wT) rdrdy
0 ]
In dimensionless form, this becomes

Pl,]( )d¢ Tjwndnd¢=%Re (2.8)

The following relation is obtained by using
the mean value:

( 8g) Re Pr
85 om 4

To calculate equation (2.9) from equations
(2.6) and (2.7) & and &; are replaced by 8, and
8¢m respectively based on their little dependence
of 4. If 8, and 8;s, are assumed to be negligibly
small compared with unity, we have the follow-
ing relation for §; ; 3:

og 2 Re Re
(675)0 = Tom (A T e sm) Tios,,

2.9)

cos i

(2.10)
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Then the following relation is obtained from
this equation:
{ 8n Re Pr Re

A= e @D

4. The energy integral equation of the boundary
layer
In the boundary layer, the conduction terms
and the convection terms due to secondary flow
are considered to be of the same order of
magnitude. By the boundary layer approxima-
tion the energy equation is written as
1 o2g g 6
Thrap T Megt Ve =0
(@) For the case of 8; < 8. In this case the
integration has to be done from ¢ =0 to
€ = 3. The energy integral equation is reduced
to

2.12)

8

1 /og 0
o at)o —ovzg 06~

0
3

8¢ngd§+de§ (2.13)

By substituting equations (1.8) and (2.6) into
this equation, putting 4 = Re/2 and neglecting
smaller terms the temperature gradient at the
wall is obtained as follows.

og Re Pr { (22 8
(ag) 5 {(35 352) cos® ¢ +

Giﬂﬁwﬁ+
{D8nRePr2(22 8

8 (35 '35c) cos
=M+ Ncosy

The mean value of this equation over i
satisfies the relation (2.9). Equation (2.10) con-
sists of the constant term and the term varying
with cos i, where the constant term is equal to
Re Pr/4. The variation of M with 4 is very small
and M in equation (2.14) is replaced by its mean
value. From comparison of N with coefficient of
cos ¢ in equation (2.10), we have

{ D 8,, Re Pr2 {22 8
8 357 35¢

-~

L(2.14)

-

__Re
" {Dn

Thus the following relation between the
thickness ratio and the Prandtl number is
obtained by putting D282 ~ 20 from equation
(1.24).

- 2[re SO )] e

In equation (2.15) ¢ <
Pr>=1.

This equation indicates that for very large
Prandtl number { approaches to an asymptotic
value of 4/11 and §; tends to its limit.

(b) For the case of & > 8. In this case,
when equation (2.12) is integrated from € = 0
to ¢ = & the energy integral equation becomes

8¢

1 /og 7

pr{ag) =g 06 -
0

8¢ 1]

;/Jjgv d¢ + def (2.16)

1 corresponds to

The same procedure as shown in the case of
8 < & is applicable to this case. When the
first order terms are taken into account, the
following expression of the temperature gradient
at the wall is obtained:

og Re P 4
(55)02 — r{(l 57 SEZ) cos ¢+
4 1
(32 5{2) sin2 } }(2.17)
{ D3, RePr2 4
I ( 5t 5(2) cosy

If the terms in the first bracket are replaced
by the mean value 3}, this equation comes to be
same in the form with equation (2.10). By
equating the coefficients of cos i, we have

RINEN)

1, corresponds to Pr < 1.

(2.18)
In this case { >

5. Nusselt numbers
The definition of Nusselt number is given by

Ny 204
Yk Tw — Tw)
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The Nusselt number for a straight pipe is 48/11,
therefore the ratio of Nusselt number for a
curved pipe to that for a straight pipe is written
that

Nu, 11 2a.q

Where ¢ is a heat input from the pipe wall per
unit area and unit time. From equation (2.8),
the heat input per unit length of the pipe and
unit time is found that

27
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Therefore g is given by

=} 7kRe Pr (2.20)

The mixed mean temperature T, is defined as
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Substltutlon of equations (2.20), (2. 21) or
(2.22) into equation (2.19) yields the Nusselt
number ratio expressed as a function of Dean
number K and thickness ratio {.

In the first approximation, the Nusselt
number ratio is given for both cases by

Nug K12
(Nus)l 01979 7

The second approximation is obtained by
correcting the first approximation with the
temperature and the velocity distributions in the
boundary layer and taking into account of terms
of the order of magnitude K-1.

For the case &; < 8,1.e. Pr > 1

(2.23)

R 1
Nus)ui— \NusJ1™ | 3705 (1 1 13\ 1 '
- R, -1/2
1+ =7 {40 120§ + (10; T ) i0 Pr} K
For the case 8; > 8, ie. Pr <1
(Jl"f _ (Nue 1 55
Nusjmr Nusx'l_glgs §+__*1“ ‘EC 1 1 I ) g (2.25)
¢ 12t 10 \3 §+15C2)20Pr

Use of the dimensionless quantities gives the
difference between the wall temperature and the
mixed mean temperature as

when 8; < §
2 2r 1—§
Td
Tw“Tmsze{I ngwmdnd¢+
27 & oo
j Jg w(l — &) d¢ d¢} @21)
0 0

The thickness ratio { is given by equation
(2.15) for the case Pr > 1, and equation (2.18)
for the case Pr << 1. Some examples of the
relation of the Nusselt number ratio against
Dean number K are shown in Fig. 9. For
Pr =071 and oo, the curve of (Nuc/Nus)ir is
also shown. From the curves of (Nu./Nus)1 and
(Nug/Nus)1r, it is possible to predict the effect of
curvature on Nusselt number for any Prandtl
number. For large Prandtl numbers the Nusselt
number ratio tends to depend only on the
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intensity of the secondary flow and come to
show little change with Prandtl number. The
experimental data for air obtained by our
experiments are in good agreements with the
curve for Pr = 0-71. Some examples of the data
for oil reported by Seban and McLaughlin [5]
are also plotted taking mean value of Nusselt
numbers at the inner and the outer wall. For

Metering
onfuce

B!ower 50x2

lack of exact information about the Prandtl
number at each run, the data are plotted
assuming Pr = 400.

EXPERIMENTS

The schematic diagram of the experimental
apparatus is shown in Fig. 10. A curved pipe of
the radius ratio of 40 was used. The pipe is of
brass, and 356 mm in an inside diameter and
12 mm in a wall thickness. Upstream of the
curved pipe placed in a horizontal plane a
straight pipe of 8:55 m long is provided to
settle the flow fully. The air supplied by a
blower flows through a metering orifice for
flow rate measurement, a settling chamber, the
straight section and the curved pipe, and is
discharged to open air.

The flow rate is measured by means of a
orifice and a Betz type manometer. The pipe is
electrically heated by nichrom wire wound around
it. The heating wire is divided into four parts
which are separately controlled by four trans-
formers so as to maintain the constant tempera-
ture gradient along the pipe axis. The wire is
electrically insulated from the pipe by a thin
rock wool tape covering the pipe wall. The wall
temperature is measured at six stations as

Settling chomber
Honeycomb

5C 50 100 50100100 (Screen mesh)

I

|

\
Thermal insulator L ‘l‘ "1‘350'J L““’“"W“ 1600 — w8550 — -

Brass pipe

Straight pipe

FiG. 10. The schematic diagram of the experimental apparatus.
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shown in Fig. 10 by thermocouples attached to
the external surface of the pipe. At the station
2 and 5, in order to see the temperature variation
around the periphery four thermocouples are
attached at the top, bottom and each side. The
velocity and temperature distributions inside the
pipe are measured at two stations, A and B in
Fig. 10, by traversing probes horizontally or
vertically through holes or slits at the pipe wall.
The velocity distributions are measured by means
of an one-hole cylindrical yaw probe and a
Chattock type manometer. The probe is of
stainless steel, and is 0-8 mm in a diameter. It has
a pressure hole of 0-2 mm diameter. The probe is
inserted thoroughly from one side of the wall
to the other side. To measure the velocity at a
position, the stagnation pressure is measured at
first, and then according to the calibrated
characteristics the static pressure is measured by
rotating the probe around its axis to the angle
of 43 degrees from the flow direction.

The temperature distributions are measured
by means of a T-shaped thermocouple probe
and a potentiometer. The traversing device and
a detailed figure of the probe are shown in
Fig. 11.
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B
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; 9 bed

Rotating
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€ outlet
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Z17Z|
Z1%
"?
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Flow direction Stainless pipe
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- . ——Lead wire
Cu-Co thermocouple

Fic. 11. The traversing device and the thermocouple
probe.

The velocity distributions in a horizontal plane
at two different sections where the flow fully
developed and was ascertained to be laminar by
a hot wire anemometer are shown in Fig. 12.
As Ito reported, our experiment also reveals

20
Re =4000
Q Station A
A\ Station B O~
-5 d
/ FaN
w /g‘l
W_m -0 /
/A
/Q
Q
o5 //
0 T 1 ) T ) L] L} T
10 [} -0
Inside Outside
rla of curvature

FiG. 12. Comparison of the velocity profiles measured
at station A and B in Fig. 10.

that the flow develops in a short running length
in a curved pipe and detailed measurements were
carried out for fully developed flows. Figure 13
shows that velocity profiles are not influenced
by heating as assumed in the theoretical analysis.
In Fig. 14 velocity profiles in horizontal and
vertical planes are shown with the Poiseuille
profile. Observed temperature profiles in a
horizontal plane are shown in Fig. 15 to reveal
that they are fully developed. In Fig. 16 similar
to velocity profile, temperature profiles in a
vertical and horizontal plane are plotted with
that calculated by using the Poiseuille velocity
profile.

These observed velocity and temperature
profiles make clear that, as assumed in the
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FiG. 13. Comparison of the velocity profiles measured
when the pipe was heated and not heated.

theoretical analysis, only in the region close to
the wall velocity and temperature gradient are so
large as observed in a boundary layer around a
body.

Heat input is evaluated from equation (2.20)
where a temperature gradient is obtained from
measurement of wall temperatures. A mixed
mean temperature is evaluated as follows. A
cross section of the pipe is divided into small
meshes as shown in Fig. 17. By use of the velocity
W0, Wos and the temperature To, To; measured
on horizontal and vertical planes passing through
a center of the section, the velocity and the
temperature in a mesh (x;, ;) are calculated by

Wi Wos
Wy =— W
Tio .To;
Ty = To

where Wy and T are the velocity and the tem-
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FiG. 14. Velocity profiles.

perature at the center of the section. Then the
mixed mean temperature is calculated by

2 Wij Tij dxi dyj

Tz ¥

Z Wi dxidy;

if

The Nusselt number ratio is obtained from

equation (2.19) and heat input determined from
the measured wall temperature gradient. The
physical property is evaluated at the mixed
mean temperature. The results are in good
agreements with the theoretical evaluation as
shown in Fig. 9.

CONCLUSION
In the range of very large Dean number
K = Re+/a/R, a flow field and a temperature
field in a curved pipe are analysed for fully
developed laminar flow with constant heat flux
by theory and experiment, and the following
conclusive results are obtained.
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FiG. 15. Comparison of the temperature profiles measured
at station A and B in Fig. 10. (7; is the temperature at
the centre of the pipe.)

(1) The flow field is divided into the core
region and the boundary layer along the wall.
The additive flow resistance in a curved pipe
was shown to be caused by stresses due to the
secondary flow. The result which was obtained
by theoretical analysis to the second approxima-
tion was found to agree with the experimental
results obtained so far.

(2) The same procecure as for the flow field is
applied to the analysis of heat transfer in a
fully developed temperature field under the con-
dition of uniform heat flux. The ratio of thick-
ness of a temperature boundary layer to that of a
velocity boundary layer was expressed in the
terms of Pr number. Nu number was shown to be
a function of Dean number with a parameter of
Pr number.

(3) Experiment was carried out for a fully
developed laminar air flow in a curved pipe of
R/a = 40 and of 35-6 mm inner diameter in the
measurement of velocity and temperature profile.
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FiG. 16. Temperature profiles. (7, is the temperature
at the centre of the pipe.)
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Fic. 17. The cross section of the pipe divided into small
meshes in order to calculate a mixed mean temperature.

The experimental results about these profiles
supported the boundary-layer approximation
applied in the theoretical analysis.

Nusselt numbers calculated from experimental
data were shown to agree with those obtained
theoretically.
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Résumé—1.’étude théorique d’un écoulement laminaire enti¢rement établi dans un tuyau courbe
donne un résultat satisfaisant pour le coefficient de perte de charge et le coefficient de transport de
chaleur dans un champ de température entiérement établi sous la condition de flux de chaleur uniforme
a de grands nombres de Dean [= Re+/(a/R)]. Le rapport du nombre de Nusselt pour un écoulement
dans un tube courbe a celui pour I’écoulement dans un tube rectiligne est obtenu en fonction du
nombre de Dean et du nombre de Prandtl. Lorsque le nombre de Prandtl et le nombre de Dean
augmentent, l'effet de la courbure sur la perte de charge et le transport de chaleur croft, mais le rap-
port des nombres de Nusselt approche de la valeur asymptotique lorsque le nombre de Prandtl croit.
Une étude expérimentale a été conduite pour I’écoulement de Pair dans un tuyau courbe. Les distri-
butions de vitesse et de température sont mesurées et on montre que le rapport des nombres de
Nusselt obtenu par I'expérience est en bon accord avec celui obtenu par 'analyse théorique.

Zusammenfassung—Die theoretische Untersuchung einer voll ausgebildeten laminaren Stromung
in einem gekriimmten Rohr gibt fiir den Widerstandsbeiwert und die Wérmeiibergangszahl in einem
vollig ausgebildeten Temperaturfeld unter der Bedingung einer gleichformigen Wirmestromdichte bei
grossen Dean-Zahlen [= Re+/(a/R)] ein zufriedenstellendes Ergebnis, Wird die Nusselt-Zahl fiir die
Stromung im gekriimmten Rohr zu der Nusselt-Zahl fiir die Stromung in geraden Rohr ins Verhiltnis
gesetzt, so ist dieses Verhiltnis eine Funktion der Dean- und der Prandtl-Zahl. Wenn diese beiden
Zahlen grosser werden, steigt auch der Einfluss der Kriimmung auf den Stromungswiderstand und den
Wirmeiibergang. Das Verhaltnis der Nusselt-Zahlen nédhert sich jedoch bei wachsender Prandtl-
Zahl dem Grenzwert. Experimentelle Untersuchungen wurden an einem luftdurchstromten, gekriimmten
Rohr ausgefithrt. Geschwindigkeits- und Temperaturverteilung werden gemessen und fiir das experi-
mentell bestimmte Verhiltnis der Nusselt-Zahlen ergibt sich eine gute Ubereinstimmung mit den
theoretisch ermittelten Werten.

Anrmoranus—TeopeTHyeckoe U3yueHHe IOJHOCTHIO PA3BUTOTO JAMIHAPHOTO TeYeHUA B
N30THYTOH Tpy0e IaeT yXOBIETBOPUTEIbHEIE Pe3yAbTATH I KO3PPUIMEHTOB COIPOTUBIIEHIA
1 Temaoo6MeHa NpH IOJIHOCTBIG CHOPMUPOBABLIEMCA TEMIIEParypPHOM [0Je H B yCJIOBHAX
OJMHAKOBOI'O TeIIOBOrO IOTOKA npu Gonpmmx uncmax Juua [=Rev/(a/R)]. OrtHomenue
qnesa Hyccenbra st noroka B usorHyToif Tpy6e k uucay HyccensTa jis noroka B npAMoi
TpyGe mosrydeno B Bige yHrumun uncaa Muma u wncaa [Tpangras. [pu ysenandenun ducert
Huna u [Ipanmaraa BAMAHME KPHBH3HE HA CONPOTHMBIIGHHE TIOTOKA U TEILIOOGMEH yBeJMui-
BaeTcs, cooTHOUIeHne uncel HyccesabTa focTUraer aCHMITOTUYECKOTrO 3HAYOHUA NPI YBeJINIM-
Baoomemca sHavenuu Yucna [paugraa. [IpoBoguaIoch sKCIEPUMEHTAIBHOE HBYYEHIE HOTOKA
BO3HYXa B M30THyTolM TpyGe. MsMepaiuce pacnpereieHns CKopocT:H U Temmeparypsl. ITo-
Ka3aHo, 4YTO DKCIEPUMEHTAJbHO NOIyYeHHOe COOTHomrenme dncen Hyccesbra xopomio
corjiacyeTcd € TeOPeTUYeCKHM.



